Adiabatic cooling of cesium to 700 nK in an optical lattice.
نویسندگان
چکیده
We localize Cs atoms in wavelength-sized potential wells of an optical lattice, and cool them to a three-dimensional temperature of 700 nK by adiabatic expansion. In the optical lattice we precool the atoms to ø1 mK. We then reduce the trapping potential in a few hundred ms, causing the atomic center-of-mass distribution to expand and the temperature to decrease by an amount which agrees with a simple 3D band theory. These are the lowest 3D kinetic temperatures ever measured.
منابع مشابه
Beyond optical molasses: 3D raman sideband cooling of atomic cesium to high phase-space density
We demonstrate a simple, general purpose method to cool neutral atoms. A sample containing 3x10(8) cesium atoms prepared in a magneto-optical trap is cooled and simultaneously spin polarized in 10 ms at a density of 1.1x10(11) cm (-3) to a phase space density nlambda(3)(dB) = 1/500, which is almost 3 orders of magnitude higher than attainable in free space with optical molasses. The technique i...
متن کاملTime dependence of laser cooling in optical lattices
We study the dynamics of the cooling of a gas of caesium atoms in an optical lattice, both experimentally and with 1D full-quantum Monte Carlo simulations. We find that, contrary to the standard interpretation of the Sisyphus model, the cooling process does not work by a continuous decrease of the average kinetic energy of the atoms in the lattice. Instead, we show that the momentum of the atom...
متن کاملDegenerate Raman Sideband Cooling of Trapped Cesium Atoms at Very High Atomic Densities
Vladan Vuletić, Cheng Chin, Andrew J. Kerman, and Steven Chu Department of Physics, Stanford University, Stanford, California 94305-4060 (Received 25 August 1998) We trap 107 cesium atoms in a far red detuned 1D optical lattice. With degenerate Raman sideband cooling we achieve a vibrational ground state population of 80% for the steep trapping direction. Collisional coupling enables us to cool...
متن کاملTemperature and localization of atoms in three-dimensional optical lattices
We report temperature measurements of atoms trapped in a three-dimensional ~3D! optical lattice, a welldefined laser-cooling situation that can be treated with currently available theoretical tools. We also obtain fluorescence spectra from a 3D optical lattice, from which we obtain quantitative information about the trapping atoms, including the oscillation frequencies, spatial localization, an...
متن کاملNumerical Simulation Of the Componend Angles Effects On Adiabatic Film Cooling Effectiveness
Abstract Film Cooling Adiabatic Effectiveness on a Profile of a Gas Turbine blade that Using Holes with 45 Degree Combined Angles to the Flow Direction and Radial Along the Attack Edge as well as 25 Degree Angles to the Flow Direction and Surface Area of the Attack Edge Area and 35 degrees relative to the outlet hole suefaces along stagnation line, Under a specified blowing ratios, using the Re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 74 9 شماره
صفحات -
تاریخ انتشار 1995